
NEC 304

STLD

Lecture 34

Datapath Analysis

Rajeev Pandey

Department Of ECE

rajeevvce2007@gmail.com

Overview

° Datapaths must deal with input and output data values
• Implement with tri-state buffers

° Necessary to control external interfaces
• Perform repetitive operations

° Some datapaths require decision making
• Control outputs implemented in ROM

° Moving towards software
• Control implemented as a series of instructions

° Understanding the data and control path

Datapath I/O

° A wire can be driven by only one tri-state at a time
• If InPass is active, AluPass must be inactive

• If AluPass is active, InPass must be inactive

Function

X Y LoadYLoadX

ALU

InPass OutPass

AluPass

Datapath I/O

° Two values enter from the left (A and B)
• Need to perform (A+B)+A

• In -> X (Load A)

• In -> Y (Load B)

• A+B -> Y

• (A+B)+A -> Out

Function

X Y LoadYLoadX

ALU

InPass OutPass

AluPass

In Out

Four steps and then repeat

Implementing the Control ROM

° Two values enter from the left (A and B)
• Need to perform (A+B)+A

• In -> X (Load A) - State 00

• In -> Y (Load B) - State 01

• A+B -> Y - State 10

• (A+B)+A -> Out - State 11

PS NS Function LoadX LoadY InPass AluPass OutPass

00 01 000 1 0 1 0 0
01 10 000 0 1 1 0 0
10 11 011 0 1 0 1 0
11 00 011 0 0 0 1 1

PS

NS

0100010100
1000001100

1101101010

00
01
10

ROM

Control outputs

0001100011 11

Addr

More Complicated Example

° Can we compute (A+B) . (A-B)?

° Currently, no place for intermediate storage

° Solution: Add RAM to datapath.

Function

X Y LoadYLoadX

ALU

InPass OutPass

AluPass

More Complicated Example

° Can we compute (A+B) . (A-B)?
• Need to add intermediate storage.

° Typical sizes (1MB – 2GB)

Function

X Y LoadYLoadX

ALU

InPass OutPass

AluPass

RAM
Addr

Read
Write

Add RAM to the Datapath

Implementing the Control ROM

° Two values enter from the left (A and B)
• Need to perform (A+B) . (A-B)

• In -> X (Load A) - State 000

• In -> Y (Load B) - State 001

• A+B -> RAM[4] - State 010

• A-B -> X - State 011

• RAM[4] ->Y - State 100

• (A+B) . (A-B) ->Out - State 101

PS NS Function LoadX LoadY InPass AluPass OutPass Addr Read Write

000 001 000 1 0 1 0 0 000 0 0
001 010 000 0 1 1 0 0 000 0 0
010 011 011 0 0 0 1 0 100 0 1
011 100 010 1 0 0 1 0 000 0 0
100 101 000 0 1 0 0 0 100 1 0
101 000 110 0 0 0 1 1 000 0 0

Does the Value of the Data Matter?

° Problem: Add A to itself until overflow occurs
• Amount of steps depends on A

Function

X Y LoadYLoadX

ALU

InPass OutPass

AluPass

RAM
Addr

Read
Write

How can we determine if
overflow occurred?

OF

Implementing the Control ROM using Conditions

° One value enters from the left
Add A to itself until overflow occurs

• In -> X, Y (Load A, B) - State 0 - Next state 1

• X+Y -> Out, X - State 1 - Next state (1 if no overflow, 0 if overflow)

Include overflow (OF) bit as a ROM input
Note that it doubles the size of the ROM

PS OF NS Function LoadX LoadY InPass AluPass OutPass Addr Read Write

0 0 1 000 1 1 1 0 0 000 0 0
0 1 1 000 1 1 1 0 0 000 0 0
1 0 1 011 1 0 0 1 1 000 0 0
1 1 0 011 1 0 0 1 1 000 0 0

Bits in the ROM
Each row indicates a ROM word

Implementing the Control ROM with Conditionals

° Control path may have
many inputs
• Overflow, carry out, zero

° Used to perform
conditional operations

° If statements and loops in
programming languages

Addr

NS

10001110000000

10001110000000

10111001100000

00
01
10

ROM

Control outputs

00110101100000 11

OF

2

PS OF NS Function LoadX LoadY InPass AluPass OutPass Addr Read Write

0 0 1 000 1 1 1 0 0 000 0 0
0 1 1 000 1 1 1 0 0 000 0 0
1 0 1 011 1 0 0 1 1 000 0 0
1 1 0 011 1 0 0 1 1 000 0 0

One More Example

° Read two values from RAM (locations 0 and 1) and
store to location 2.
• Very common operation for microprocessor

Function

X Y LoadYLoadX

ALU

InPass OutPass

AluPass

RAM
Addr

Read
Write

Implementing the Control ROM

° Perform memory reads and writes
• RAM[0] -> X - State 00

• RAM[1] -> Y - State 01

• X+Y -> RAM[2] - State 10

PS NS Function LoadX LoadY InPass AluPass OutPass Addr Read Write

00 01 000 1 0 0 0 0 000 1 0
01 10 000 0 1 0 0 0 001 1 0
10 00 011 0 0 0 1 0 010 0 1

No interaction with outside interfaces (In, Out) is required

Very similar to microprocessor operations

This slide marks the end of required material for this lecture!

Processor Construction Kit

L.E.

ALUFn CCs

O.E.

STATIC
RAM

R/W

MUXSel

Subproblem 1: DATA PATHS

ROM

Inputs from Data Path

Data Path Control Signals

Subproblem 2: CONTROL

Processor Compilation

° Software engineer writes C program

° Compiler software converts C to assembly code

° Assembler converts assembly code to binary format

main () {
int A, B, C;

C = A + B;
}

C program

Compile LD R1, A ; load A to Reg R1
LD R2, B ; load B to Reg R2
ADD R3, R1, R2 ; Add R1, R2 -> R3
ST R3, C ; Store result in C

Assembly program

A, B, and C are storage locations in
main memory (DRAM)

Data Memory

RD

WD

Adr

R/W

WDSEL0 1 2

WA
Rc <25:21>

Y

PCSEL

 PCIF

BT

+4

Instruction
Memory

A

D

Rb: <15:11>Ra <20:16>

RA2SEL

Rbc <25:21>

+

C: <25:21> Register

File

RA1 RA2

RD1 RD2

BSEL01

Z

ALU
A B

BTC: <15:0>

Op Fn: <29:26>

ASEL 01

<PC>+4

WA WD

WE

A Microprocessor Architecture
(similar to HP Alpha)

Summary

° Datapaths are important components of computer
systems

° Interaction between control and data path determines
execution time

° Each sequence of operations can be represented with a
ROM program

• Each row in the state table corresponds to a word in the ROM

° Multiple rows for each state if the ROM has a control
input (e.g. ALU overflow)

° Next time: Notation to represent the data and control
paths

	NEC 304 STLD Lecture 34 Datapath Analysis
	Overview
	Datapath I/O
	Slide 4
	Implementing the Control ROM
	More Complicated Example
	Slide 7
	Slide 8
	Does the Value of the Data Matter?
	Implementing the Control ROM using Conditions
	Implementing the Control ROM with Conditionals
	One More Example
	Slide 13
	Processor Construction Kit
	Processor Compilation
	PowerPoint Presentation
	Summary

